Simulation of 20.96% efficiency n-type Czochralski UMG silicon solar cell

Peiting Zhenga, Fiacre.E.Rougieuxa, Chris Samundsetta, Xinbo Yanga, Yimao Wana, Julien Degoulangeb, Roland Einhausb, Pascal Rivatc and Daniel Macdonalda

Abstract
In this paper, we present the 3D simulation of >20% efficiency solar cells using n-type 100% Upgraded-Metallurgical Grade (UMG) Czochralski (CZ) silicon and Electronic Grade (EG) Float Zone (FZ) fabricated using the same process. The cells have a passivated emitter rear locally diffused (PERL) structure, with an etch-back approach on the rear to maintain high bulk lifetime in the cells via phosphorus gettering. Simulation of the power losses of both devices are analysed as a function of measured material and cell parameters, including minority carrier lifetime, reflectance, contact resistivity and recombination parameters of the diffused and non-diffused surfaces.

© 2016 The Authors. Published by Elsevier Ltd.
Peer review by the scientific conference committee of SiliconPV 2016 under responsibility of PSE AG.

Keywords: silicon; upgraded metallurgical grade; compensation; solar cell; modelling and simulation

1. Introduction
Upgraded Metallurgical-Grade (UMG) silicon has raised interest as a low cost alternative material for high efficiency silicon solar cells[1-5]. Currently, the most widely used process to produce silicon for electronic and solar applications is the Siemens process, which is both energy intensive (purified through the gas phase) and requires heavy initial investments. UMG silicon feedstock is purified using a solid or liquid phase purification process, which can avoid high thermal budgets (lower energy consumption) and requires less expensive infrastructure. There have been a number of techniques developed to date to further purify Metallurgical-Grade silicon (MG-Si) through...
metallurgical routes. The most commonly used methods are: directional solidification, acid leaching, slag treatments, plasma purification and evaporation under vacuum [6-13]. However, the efficiency of these methods is not as good as in the gas phase purification. Therefore, UMG silicon contains more impurities, especially shallow acceptors and donors (B, Al and P), which have relatively larger segregation coefficients [14, 15], and so are more difficult to remove, and the minority carrier lifetime is usually lower in the as-grown state. In addition, the remaining dopant atoms in the feedstock lead to material compensation, the carrier mobility is thus reduced, and the presence of boron leads to the formation of the boron-oxygen (BO) defect, even in n-type compensated UMG silicon wafers [16-18]. Recent improvements in the UMG purification process have led to an improvement in feedstock quality [19]. The efficiency of UMG silicon-based solar cells has also improved dramatically. A 19.8% efficiency solar cell has been reported by Rougieux et al. [20] in 2015, followed by a 20.96% efficiency UMG silicon solar cell in 2016 [21]. In this paper, we present 3D simulation results using Quokka [22] (a 3D semiconductor simulation tool), for this recent high efficiency (20.96%) silicon cell based on 100% solar-grade feedstock, using n-type Czochralski-grown wafers, and a 21.91% cell based on Electronic Grade (EG) FZ material using the same fabrication process.

2. Experimental methods

The cells simulated were from two different types of n-type monocrystalline silicon wafers. The first type was grown with 100% UMG silicon feedstock without adding electronic grade polysilicon feedstock using the Czochralski process. The second type was from a Float-Zone (FZ) grown ingot using standard electronic grade (EG) silicon feedstock. The UMG feedstock was produced by FerroPem in the framework of the PHOTOSIL project. The wafers had resistivities of 4 Ω·cm (solidified fraction $f_s=20\%$) for the UMG material and 1 Ω·cm for the EG wafers. The doping density of both phosphorus and boron was measured by Secondary Ion Mass Spectrometry (SIMS) analysis, showing that the UMG wafers had a boron concentration $[B] = 1.27 \times 10^{16} \text{cm}^{-3}$ and phosphorus concentration of $[P] = 1.42 \times 10^{16} \text{cm}^{-3}$, which results in a net doping of $n_0 = 1.4 \times 10^{15} \text{cm}^{-3}$.

The cell structure used in this study is a Passivated Emitter Rear Locally-diffused (PERL) solar cell structure [23], specially adapted to maintain a high carrier lifetime in the UMG material, and is represented in Figure 1. The cells were 2 × 2 cm$^2$ in size. A key feature of the cell is a full area phosphorus diffusion on the rear side which is etched back to leave islands of n+ silicon under the rear side contacts. This allows effective phosphorus gettering of the wafer, while also permitting reduced recombination at the rear side. A more detailed description of the cell fabrication process can be found in [21]. The dimensions of the contacts and the properties of the cells, for example, sheet resistance of the diffusion are summarized in Table 2.

![Fig. 1. Schematic diagram of PERL silicon solar cell with full front boron diffusion and rear etch-back localized phosphorus diffusion.](image-url)

In order to control the fabrication process and obtain accurate simulation results for the cells, several important parameters on control samples were measured. The recombination parameter $J_0$ of the front textured boron diffusion was measured on 100Ω·cm n-type control wafer. To measure the $J_0$ for the un-diffused rear side passivated with
SiN we used sister wafers to those used for cells. Dark IV measurements were performed using a Keithley 2400 source meter to extract the shunt resistance ($R_s$)\cite{24}. The contact resistivity ($\rho_c$) for both the front and rear metallization was measured using Transfer Length Method (TLM) measurements\cite{25}. Suns-$V_{oc}$ measurements \cite{26} were performed to evaluate the lumped series resistance ($R_s$) at maximum power point\cite{27}.

3. UMG material bulk lifetime study

Bulk lifetime is an important parameter to be used in the device simulation. It can significantly affect the recombination in the device, and thus the electrical properties of the cells. During the fabrication process, high temperature steps, for example, boron and phosphorus diffusion, can have a great impact on the bulk minority carrier lifetime. The accurate determination of the final bulk lifetime in the device is therefore critical for the accuracy of our simulations. The investigation of the bulk lifetime before and after each high temperature processes in this cell design has been reported in the previous study \cite{21}. It showed that boron diffusion can dramatically reduce the carrier lifetime, by an order of magnitude. However, a subsequent phosphorus diffusion has a positive gettering effect and hence recovers the lifetime to some extent. Therefore an etch-back approach was utilized to achieve the localization of the diffusion on the rear side for the PERL structure to maintain a high bulk lifetime. A more detailed analysis on the bulk lifetime on both the UMG CZ and EG FZ wafers can be found in \cite{21}. In this paper, only the final bulk lifetime after all high temperature processes for both UMG CZ and EG FZ wafers are shown. The injection dependent minority carrier lifetimes are used in the simulations in section 5.2. The final bulk lifetime for both types of wafers shown in Figure 2 were measured down to an injection level of $10^{13}$ cm$^{-3}$ for more accurate estimation of the bulk properties at low injection in the simulations. It is seen that the UMG CZ wafer has comparable bulk lifetime to the EG FZ wafer after high temperature processing, and has a slightly stronger injection dependence.

![Fig. 2. Injection dependent minority carrier bulk lifetime for n-type EG 1 Ω.cm control wafer and n-type UMG Cz4 Ω.cm silicon wafers in the final state after all high temperature processes.](image)

4. Cell results

Independent measurements of the illuminated current-voltage characteristics at Fraunhofer CalLab confirm an efficiency of 20.96% and 21.91% for the best $n$-type UMG Cz cell and the best EG FZ cell. The IV curves together with the simulated light IV (to be discussed further in section 5) are plotted in Figure 3 (a). The thickness, dopant
concentrations, and net doping $n_0$ ($n_0 = [P] - [B]$ for UMG material) of the cells are shown in Table 1. $R_{sh}$, $R_s$, and pseudo fill factor (PFF) extracted from Dark-IV and Suns-$V_{oc}$ measurements are also included in Table 1. The details of the extracted cell parameters from the illuminated IV curves are listed in Table 4.

![Image](a) Independent illuminated IV measurements at Fraunhofer CalLab and simulated IV of the best $n$-type UMG Cz and EG FZ cells. (b) EQE measurements and simulation of the best $n$-type UMG Cz and EG FZ cells (measured at Fraunhofer CalLab).

The External Quantum Efficiency (EQE) and the simulated EQE for the best cells are shown in Figure 3 (b). These reveal a slightly higher EQE for the UMG cell in the wavelength range from 300 to 900 nm, especially in the range from 300 nm to 600 nm. This difference results from a slight difference in the thickness of the SiNx capping layer on the front surface. This will be discussed in section 5.1 when simulating the reflectance of the cells.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>UMG CZ</th>
<th>EG FZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$[P]$ (cm$^{-3}$)</td>
<td>$1.42 \times 10^{16}$</td>
<td>$4.8 \times 10^{15}$</td>
</tr>
<tr>
<td>$[B]$ (cm$^{-3}$)</td>
<td>$1.27 \times 10^{16}$</td>
<td>-</td>
</tr>
<tr>
<td>$n_0$ (cm$^{-3}$)</td>
<td>$1.4 \times 10^{15}$</td>
<td>$4.8 \times 10^{15}$</td>
</tr>
<tr>
<td>$W$ ($\mu$m)</td>
<td>150</td>
<td>170</td>
</tr>
<tr>
<td>$R_s$ ($\Omega \cdot$cm$^2$)</td>
<td>8000</td>
<td>5000</td>
</tr>
<tr>
<td>$R_{sun}$ ($\Omega \cdot$cm$^2$)</td>
<td>0.77</td>
<td>0.35</td>
</tr>
<tr>
<td>PFF</td>
<td>82.2</td>
<td>81.5</td>
</tr>
</tbody>
</table>

5. Simulation of the cells

In this section, the Quokka simulation of the best UMG and EG cells are presented. The simulation parameters measured on control wafers for the cells used in the Quokka measured are shown in Table 2.
Table 2. Simulation parameters used in the Quokka simulation of the cells

<table>
<thead>
<tr>
<th>Side</th>
<th>Properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>Sheet Resistance $\rho$</td>
<td>120 Ω/□</td>
</tr>
<tr>
<td></td>
<td>$J_0$-diffused</td>
<td>45 fA/cm²</td>
</tr>
<tr>
<td></td>
<td>$J_0$-contacted</td>
<td>1800 fA/cm²</td>
</tr>
<tr>
<td></td>
<td>Contact width</td>
<td>10 μm fingers</td>
</tr>
<tr>
<td></td>
<td>Contact spacing</td>
<td>1300 μm</td>
</tr>
<tr>
<td>Rear</td>
<td>Sheet Resistance $\rho$</td>
<td>0.024 mΩ.cm²</td>
</tr>
<tr>
<td></td>
<td>$J_0$-undiffused</td>
<td>3 fA/cm²</td>
</tr>
<tr>
<td></td>
<td>$J_0$-diffused</td>
<td>70 fA/cm²</td>
</tr>
<tr>
<td></td>
<td>$J_0$-contacted</td>
<td>700 fA/cm²</td>
</tr>
<tr>
<td></td>
<td>Diffusion size</td>
<td>75 μm dot</td>
</tr>
<tr>
<td></td>
<td>Contact size</td>
<td>30 μm dot</td>
</tr>
<tr>
<td></td>
<td>Contact Spacing</td>
<td>300 μm</td>
</tr>
</tbody>
</table>

5.1. Optics

To simulate the $J_{sc}$ accurately in the cells, it is critical to accurately model the wafer optical properties. The optics are modelled using the wafer ray tracer software from PV Lighthouse [28]. The front optics of the cells are modelled with a random textured surface with a Al₂O₃/SiNx stack with thickness of 15nm/52nm and 15nm/55nm for UMG and EG cells respectively to match our reflectance measurements. This will also account for the slight variation in EQE at wavelengths between 300nm to 500nm. The rear side is modelled with a rear reflector, 0.96 Lambertian fraction, with 95.5%/96% reflectance for UMG/EG cells. The rear reflectance is adjusted until the escape reflectance matches the measured reflectance. Figure 4 shows the measured and simulated reflectance of the cells. The reflectance from the fingers has been subtracted by assuming a constant reflection from the fingers across the whole wavelength range shown in the figure.

Fig. 4. Measured and simulated reflectance of the cells. The reflectance of the fingers is subtracted from the measurement results.

It is interesting to note that the simulated and measured EQE agrees and UMG and EG cells are almost identical in their EQE in the long wavelength range between 900nm to 1200nm. This indicates that the minority carrier diffusion length is significantly larger than the wafer thickness for both the UMG and EG cells. Although the
minority carrier mobility in the UMG CZ cell is expected to be reduced due to material compensation, the small thickness of the cells and comparable minority carrier lifetimes between UMG and EG cells result in the same EQE in the long wavelength region. The minority carrier diffusion lengths for the UMG and EG cells are estimated to be 695 μm and 1018 μm, with minority carrier mobilities estimated using Schindler’s model for UMG [29]and Klaassen’s model for EG[30]. The modelled mobilities of both type of wafers are included in Table 3. The compensation in the UMG cell has little effect on the current collection in this case. Thus, the resulting \( J_{sc} \) is comparable between the EG and UMG cells shown in Table 4.

5.2. Electric properties

Quokka 3D simulation utilizes the conductive boundary approximation. Thus, the recombination parameters \( J_0 \) measured on control wafers for the front and rear surfaces are used to account for the recombination at these boundaries [31]. These parameters are summarized in Table 2. The \( J_{0,\text{contacted}} \) for the front and rear are taken from typical values from literatures for a 70Ω/□ phosphorus diffusion [32] and for a 120Ω/□ boron diffusion [33].

As mentioned before, the as-cut bulk lifetime is not representative of the final bulk lifetime. According to the bulk lifetime study in section 3, we are able to use the bulk lifetime post high temperature processing in the simulation. The injection dependent minority carrier lifetime shown in Figure 2 is modelled in Quokka using two defects via the Shockley-Read-Hall (SRH) model to fit the measured lifetime for the EG FZ and UMG CZ samples. Table 3 shows the SRH parameters extracted from the lifetime test structures and used in the simulation of the cells.

$$\begin{array}{cccccc}
E_C-E_T (eV) & \sigma_n (cm^{-2}) & \sigma_p (cm^{-2}) & N_t (cm^{-3}) & \mu_n (cm^2V^{-1}s^{-1}) & \mu_p (cm^2V^{-1}s^{-1}) \\
UMG CZ & 0.5 & 1\times10^{-16} & 5\times10^{-17} & 1\times10^{12} & 948.7 & 372.5 \\
 & 1 & 9\times10^{-15} & 3\times10^{-16} & 2\times10^{12} & \text{ } & \text{ } \\
EG FZ & 0.5 & 4\times10^{-19} & 2\times10^{-17} & 1\times10^{13} & \text{ } & \text{ } \\
 & 1 & 2.7\times10^{-15} & 9\times10^{-17} & 2\times10^{12} & 1263 & 439
\end{array}$$

5.3. Simulation results

Simulation of the \( I-V \) characteristics of the cells is shown in Figure 3 (a), and is in good agreement with the measured light IV curves for both EG FZ and UMG CZ cells in terms of \( J_{sc} \) and \( V_{oc} \). The simulated FF is not in good agreement with the measurements. The simulated FF is much larger than the actual measurements. Quokka simulation only takes the contact resistivity and the bulk electrical properties into account. Any non-ideal processing conditions that may cause resistive losses elsewhere will not be included. The Suns-\( V_{oc} \) measurements indicate that series resistance affects the FF in the cells in this case. The PFF is closer to the simulated FF. The device parameters extracted from the simulated light IV are shown in Table 4.

$$\begin{array}{cccccc}
\text{Parameters} & \text{UMG CZ (simulated)} & \text{UMG CZ (measured)} & \text{EG FZ (simulated)} & \text{EG FZ (measured)} \\
J_{sc} (mA.cm^{-2}) & 40.36 & 40.23 & 40.17 & 39.89 \\
V_{oc} (mV) & 672.75 & 672.6 & 687.27 & 686.2 \\
J_{pp} (mA.cm^{-2}) & 38.42 & 37.03 & 38.41 & 37.03 \\
V_{pp} (mV) & 577.11 & 566.1 & 597.19 & 591.7 \\
FF (%) & 81.7 & 77.5 (PFF 82.2) & 83.1 & 80.1 (PFF 81.5) \\
\eta (%) & 22.22 & 20.96 & 22.98 & 21.91 \\
\Delta n_{pp} (cm^{-3}) & 4.4\times10^{14} & - & 3\times10^{14} & - \\
\Delta n_{oc} (cm^{-3}) & 3.8\times10^{15} & - & 4\times10^{15} & -
\end{array}$$

The simulation results for both UMG CZ and EG FZ cells are higher than the actual cells. It is almost entirely due to the higher FF from the simulation. The simulated \( J_{sc} \) and \( V_{oc} \) agree well with the measurements. It indicates the control parameters measured reflects the conditions in the real cells.
Figure 5 shows the breakdown of power losses simulated at maximum power point (MPP) using the free energy loss analysis method (FELA) [34] for both UMG CZ and EG FZ cells. FELA is based on the volume integral of photogeneration rate multiplied by the splitting of the quasi-Fermi levels at MPP. The higher efficiency of the EG cell essentially reflects its higher doping, leading to a greater Fermi levels splitting at MPP. A greater Fermi level splitting at MPP (due to doping), also means that losses due to SRH recombination are less significant (they are a smaller fraction of the total power loss) as shown in Figure 5.

Figure 5 also shows that majority electrons resistive losses are greater in the UMG cell compared to the EG cell. However, with these two simulations (with different doping) one cannot clearly conclude if this loss is due to lower doping or lower mobility (or both) of the UMG material. To allow a fair and meaningful comparison between UMG and EG cells we add a third scenario where the net doping of the EG cell is adjusted to the same level as the UMG cell. With this new scenario the UMG cell and EG cell have similar simulated efficiency of 22.2% to 22.28%, respectively. The difference in efficiency is mainly caused by an increased in bulk electron resistive loss in the UMG cell. This reflects the lower mobility in UMG material leading to a lower electron conductivity in the bulk. Contrary to our previous study [20], this effect is apparent due to the fact that the full-area rear-diffusion is absent in this cell structure and hence cannot assist with majority carrier conduction. All in all however, this effect has a minor influence on the efficiency (0.08% drop).

We note that these devices are also subject to slow degradation under illumination via the boron-oxygen defect, which is described in more detail in [21].

6. Conclusion

In conclusion, we have presented the 3D simulation of silicon solar cells based on 100% UMG CZ wafers with efficiencies of 20.96% and EG FZ cells of 21.91%. From the measurements and simulation, it shows that with an optimised fabrication process, the bulk lifetime and minority carrier diffusion length are not strongly limiting factors for UMG material to achieve high efficiency devices. Excluding resistive losses, the difference in the efficiency between our fabricated EG FZ and UMG CZ cells are mainly due to the difference in net doping. Our simulation shows that at similar doping and with the high quality UMG material used here, the lower majority carrier mobility...
is the only factor reducing the efficiency of UMG cells and this effect is minor (<0.1% reduction in efficiency). The simulations also indicate that improved fill factors could lead to efficiencies up to 22% on the UMG substrates with the cell structure developed here.

Acknowledgements

This work has been supported by the Australian Renewable Energy Agency (ARENA) through the Australian Center for Advanced Photovoltaics (ACAP), Project RND009, and their Postdoctoral Fellowships program. DM acknowledges support from the Australian Research Council through the Future Fellowships program.

References


