Dr Fiona J Beck

Dr Beck leads a research group focused on integrating nanophotonics and optoelectronic device design for applications in renewable energy production, and the next generation of photodetection technologies.
Dr Beck currently holds a Discovery Early Career Researcher Award (DECRA) from the ARC, as well as the Future Engineering Research Leader (FERL) Fellowship from the ANU. She joined the Research School of Engineering at The Australian National University as a research fellow and lecturer in 2015. She spent the previous 4 years as a Marie Curie Research Fellow at ICFO - The Institute of Photonic Sciences in Barcelona, Spain, employing plasmonics to enhance the performance of novel optoelectronic devices. She obtained a PhD from The ANU in 2011, with a thesis on designing plasmonic light trapping schemes for applications in solar cells. She has an MSci degree in Physics from The University of Glasgow, and was awarded the Eve and Ravenscroft prize for the most distinguished graduate from the Faculty of Physical Sciences.
Academic History
2015-present: Lecturer and Research Fellow, Research School of Engineering, ANU
2011-2014: Postdoctral Researcher, ICFO- Institute of Photonic Science, Barcelona, Spain
2007-2010: PhD in Nanophotonics for light trapping, College of Engineering and Computer Science, The Australian National University, Australia
2002-2006: First Class MSci in Physics, University of Glasgow, Scotland
Grants
2018: ARC Discovery Early Career Researcher Award, Research School of Engineering, ANU, Plasmonic hot-electron technologies for nanoscale energy conversion, DE180100383
2016: ANU Major Equipment Committee Grant, Research School of Engineering, ANU, Photoelectrochemical Characterisation Facility
2014: Future Engineering Research Leader Fellowship, Research School of Engineering, ANU.
2011-2013: Marie Curie Incoming International Fellowship, European FP7 People Framework, ICFO - Institute of Photonic Science, Barcelona, Spain, Plasmonically enhanced collodial quantum dot photovoltaics, FP7-299517-PECQDPV
My research spans the boundary between nano-scale optics and optoelectronic device design: harnessing an improved understanding of light-matter interactions to investigate new ways to convert light to other forms of energy. Our research group brings together expertise in numerical simulations, device design and fabrication, and advanced characterisation to demonstrate proof-of-concept devices with the potential to impact a range of applications; including alternative energy production, and the next generation of photodetection technologies for the biomedical and health industries
Research areas
- nanophotonics
- hot electron science
- nanostructured optoelectronic devices
Projects
Complete student projects
Further information and citation metrics can be found at my Google Scholar profile
Book Chapters
- F. J. Beck, S. Mokkapati, K. R. Catchpole, “Nanoplasmonics for light trapping in solar cells”, in Nanotechnology in Australia: Showcase of Early Career Research, edited by D. M. Kane, A. P. Micolich, and J. R. Rabeau, (Pan Stanford Publishing Pte. Ltd, 2011) Google books link
- S. Mokkapati, F. J. Beck, J. Wilson, E. Wang, K.R. Catchpole, “Nanophotonics for Light Trapping” in Nanotechnology Toward the Sustainocene, edited by T. A. Faunce, (CRC Press, 2014) Google books link
PhD Thesis
F. J. Beck, “Designing plasmonic nanoparticles for light trapping applications in solar cells”, PhD Thesis, The Australian National University, 2011.
Journal Publications
- D. A. Jacobs, K. R. Catchpole, F. J. Beck, T. P. White, “A Re-Evaluation of Transparent Conductor Requirements for Thin-Film Solar Cells”, Journal of Materials Chemistry A, 4, 4490, (2016). DOI: 10.1039/C6TA01670G.
- F. J. Beck, A. Stavrinadis, J. P. Szczepanik, T. Lasanta, G. Konstantatos,“Understanding light trapping by resonant coupling to guided modes and the importance of the mode profile, Optics Express, 24(2), 759-772 (2016). DOI: 10.1364/OE.24.000759
- F. J. Beck, A. Stavrinadis, S. L. Diedenhofen, T. Lasanta, G. Konstantatos,“Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics, ACS Photonics, 1, 11, 1197-1205 (2014). DOI: 10.1021/ph5002704
- F. J. Beck, T. Lasanta and G. Konstantatos, “Plasmonic Schottky nano-junctions for tailoring the photogeneration profile in thin film solar cells”, Advanced Optical Materials, 2, 493-500, (2014). DOI: 10.1002/adom.201300460
- A. Mihi, F. J. Beck, T. Lasanta, A. K. Rath and G. Konstantatos, “Imprinted electrodes for enhanced light trapping in solution processed solar cells”, Advanced Materials, 26, 443-448, (2013). DOI: 10.1002/adma.201303674
- A. Basch, F. J. Beck, T. Söderström, S. Varlamov, K. R. Catchpole,“Enhanced light trapping in solar cells using snow globe coating”, Progress in Photovoltaics, 20 (7), 837-842 (2012). DOI: 10.1002/pip.2240
- F. J. Beck, F. P. G. de Arquer, M. Bernechea, G. Konstantatos, “Electrical effects of metal nanoparticles embedded in ultra-thin colloidal quantum dot films”, Applied Physics Letters, 101, 041103 (2012). DOI: 10.1063/1.4738993
- A. Basch, F. J. Beck, T. Söderström, S. Varlamov, K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells”, Applied Physics Letters, 100, 243903 (2012). DOI:10.1063/1.4729290
- F. P. G. de Arquer, F. J. Beck, M. Bernechea, G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors”, Applied Physics Letters, 100, 043101 (2012). DOI:10.1063/1.3678039
- F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model”, Optics Express, 19 (25), 25230 (2011). DOI: 10.1364/OE.19.025230
- F. P. G. de Arquer, F. J. Beck, G. Konstantatos, “Absorption Enhancement in Solution Processed Metal-Semiconductor Nanocomposites”, Optics Express, 19 (21), 21038-21049 (2011). DOI: 10.1364/OE.19.021038
- K. R. Catchpole, S. Mokkapati, F. J. Beck, E.-C. Wang, J. Lee, A. McKinley, A. Basch, “Plasmonics and nanophotonics for photovoltaics”, Materials Research Society Bulletin, July 2011.DOI:0.1557/mrs.2011.132
- K. R. Catchpole, S. Mokkapati, F. J. Beck, "Comparing nanowire, multi-junction and single junction solar cells in the presence of light trapping", Journal of Applied Physics, 109, 084519 (2011).DOI:10.1063/1.3579420
- S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells”, Journal of Physics D: Applied Physics. 44, 185101, (2011). DOI:10.1088/0022-3727/44/18/185101
- S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions”, Journal of Applied Physics, 109, 073105, (2011).DOI:10.1063/1.3567299
- F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates”, Optics Express, 19 (S2), A146, (2011).DOI: 10.1364/OE.19.00A146
- S. Mokkapati, F. J. Beck, K. R. Catchpole, “Analytical approach for design of blazed dielectric gratings for light trapping in solar cells¨, Journal of Physics D: Applied Physics, 44, 055103, (2011).DOI: 10.1088/0022-3727/44/5/055103
- Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localised surface plasmons”, Applied Physics Letters, 96, 261109, (2010).DOI:10.1063/1.3460288
- F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles”, Progress in Photovoltaics, 18 (7), 500, (2010). DOI: 10.1002/pip.1006
- F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in light-trapping by plasmonic nanoparticle arrays located on the front or on the rear of solar cells”, Applied Physics Letters, 96, 033113, (2010).DOI:10.1063/1.3292020
- S. Mokkapati, F. J. Beck, A. Polman and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells”, Applied Physics Letters, 95, 053115, (2009).DOI:10.1063/1.3200948
- F. J. Beck, A. Polman and K. R. Catchpole, “Tuneable light trapping for solar cells using localised surface plasmons”, Journal of Applied Physics, 105 (11), 114310, (2009).DOI:10.1063/1.3140609
- G. Gibson, L. Barron, F. J. Beck, G. Whyte and M. Padgett, “Optically controlled grippers for manipulating micron-sized particles”, New Journal of Physics, 9, 14, (2007).DOI:10.1088/1367-2630/9/1/014
Service
start 2018- present: Early Career Academic representative on the CECS Executive
start 2016- end 2017: Student Experience Coordinator for coursework students in RSE.
Student experience and engagement (SE) in the University context incorporates three main ideas: inspiring the active participation and interest of students in their academic studies; providing the services and opportunities necessary for students to fully integrate into college life; and facilitating the engagement of students with external organisations through outreach, internships and work experience in order to enrich their studies.
Code | Title | Year 20.. | Semester |
---|---|---|---|
ENGN6334 | Semiconductors | 18, 19, 20, 21 | S2 |
Code | Title | Year 20.. | Semester |
---|---|---|---|
ENGN3334 | Semiconductors | 18, 19, 20, 21 | S2 |