Dr Fiona J Beck

Fiona J Beck joined the Research School of Engineering at The Australian National University as a research fellow and lecturer under the Future Engineering Research Leadership Fellowship in 2015. She spent the previous 4 years at ICFO - The Institute of Photonic Sciences in Barcelona, Spain, working with the Solution Processed Nanophotonics Group, employing plasmonics to enhance the performance of novel optoelectronic devices. She obtained a PhD from The ANU in 2011, with a thesis on designing plasmonic light trapping schemes for applications in solar cells. She has an MSci degree in Physics from The University of Glasgow, and was awarded the Eve and Ravenscroft prize for the most distinguished graduate from the Faculty of Physical Sciences.  

Academic History

2015-Onwards:  FERL fellow, Research School of Engineering, ANU

2011-2014: Postdoctral Researcher, Solution Processed Nanophotonics Group, The Institute of Photonic Science, Spain

2007-2010: PhD in Nanophotonics for light trapping, College of Engineering and Computer Science, The Australian National University, Australia

2002-2006: First Class MSci in Physics, University of Glasgow, Scotland

 

Grants and Academic Awards

2016: ANU Major Equipment Committee Grant for a Photoelectrochemical Characterisation Facility, (AUD160k).

2014:  Future Engineering Research Leader (FERL) Fellowship, College of Engineering and Computer Science at ANU. This is an internationally advertised, 5-year fellowship, including start-up funding (AUD120k), salary, and yearly professional development funding (AUD11k/yr).

2011: Marie Curie Incoming International Fellowship under the European FP7 People Framework, (FP7-299517-PECQDPV). This is a 3-year fellowship, (EUR176K), similar to a DECRA.

2010: Nominated for the JG Crawford Prize at The Australian National University for the graduate students in the faculties of Science, Medicine and Engineering most deserving of recognition for the quality of their graduate work 

2006: Ede & Ravenscroft Prize, awarded annually to the most distinguished graduate of the Physical Sciences Faculty at the University of Glasgow.  Mackay Smith Prize, awarded annually to the candidate most distinguished in Physics in the examination for the degree of Bachelor of Science with honours at the University of Glasgow

 

 

Nanostructured Optoelectronics, Nanophotonics and Plasmonics 

I am interested in harnessing light matter interactions at the nano-scale to advance renewable energy and energy saving technologies. My research spans two boundaries: between semiconductor physics and nano optics; and between fundamental and applied concepts.  I explore fundamental questions about the processes occurring in semiconducting materials in the vicinity of strong optical resonances and nanostructured interfaces.  By exploiting nanophotonic structures and novel device architectures I work to improve both the electrical and optical performance of optoelectronic devices with application to:

  • photovoltaics and solar energy 
  • photodetection
  • sensing
  • optical devices

Some of the specific research questions I am working on include:

  • Hot electron science and applications
  • Processes that occur in semiconductors in the vicinity of optical resonances
  • Modification of the charge generation profile to improve power conversion efficiency
  • Charge transport across nanostructured interfaces and in ultra-thin nanostructured solar cells
  • Energy transport between low dimensional semiconductors (quantum dots and wells) and plasmonic structures 
  • Advanced electrical and optical characterisation of semiconductors and optoelectronic devices
  • Modelling of the electrical and optical characteristics of semiconductors and optoelectronic devices

Further information and citation metrics can be found at my Google Scholar profile. I also have a ResearcherID and an ORCID

Book Chapters

  1. F. J. Beck, S. Mokkapati, K. R. Catchpole, “Nanoplasmonics for light trapping in solar cells”, in Nanotechnology in Australia: Showcase of Early Career Research, edited by D. M. Kane, A. P. Micolich, and J. R. Rabeau, (Pan Stanford Publishing Pte. Ltd, 2011) Google books link
  2. S. Mokkapati, F. J. Beck, J. Wilson, E. Wang, K.R. Catchpole, “Nanophotonics for Light Trapping” in Nanotechnology Toward the Sustainocene, edited by T. A. Faunce, (CRC Press, 2014) Google books link

PhD Thesis

F. J. Beck, “Designing plasmonic nanoparticles for light trapping applications in solar cells”, PhD Thesis, The Australian National University, 2011.

Journal Publications

  1. D. A. Jacobs, K. R. Catchpole, F. J. Beck, T. P. White, “A Re-Evaluation of Transparent Conductor Requirements for Thin-Film Solar Cells”, Journal of Materials Chemistry A, 4, 4490, (2016). DOI: 10.1039/C6TA01670G.
  2. F. J. Beck, A. Stavrinadis, J. P. Szczepanik, T. Lasanta, G. Konstantatos,“Understanding light trapping by resonant coupling to guided modes and the importance of the mode profile, Optics Express, 24(2), 759-772 (2016). DOI: 10.1364/OE.24.000759
  3. F. J. Beck, A. Stavrinadis, S. L. Diedenhofen, T. Lasanta, G. Konstantatos,“Surface plasmon polariton couplers for light trapping in thin-film absorbers and their application to colloidal quantum dot optoelectronics, ACS Photonics, 1, 11, 1197-1205 (2014). DOI: 10.1021/ph5002704
  4. F. J. Beck, T. Lasanta and G. Konstantatos, “Plasmonic Schottky nano-junctions for tailoring the photogeneration profile in thin film solar cells”, Advanced Optical Materials, 2, 493-500, (2014). DOI: 10.1002/adom.201300460
  5. A. Mihi, F. J. Beck, T. Lasanta, A. K. Rath and G. Konstantatos, “Imprinted electrodes for enhanced light trapping in solution processed solar cells”, Advanced Materials, 26, 443-448, (2013). DOI: 10.1002/adma.201303674
  6. A. Basch, F. J. Beck, T. Söderström, S. Varlamov, K. R. Catchpole,“Enhanced light trapping in solar cells using snow globe coating”, Progress in Photovoltaics, 20 (7), 837-842 (2012). DOI: 10.1002/pip.2240
  7. F. J. Beck, F. P. G. de Arquer, M. Bernechea, G. Konstantatos, “Electrical effects of metal nanoparticles embedded in ultra-thin colloidal quantum dot films”, Applied Physics Letters, 101, 041103 (2012). DOI: 10.1063/1.4738993
  8. A. Basch, F. J. Beck, T. Söderström, S. Varlamov, K. R. Catchpole, “Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells”, Applied Physics Letters, 100, 243903 (2012). DOI:10.1063/1.4729290
  9. F. P. G. de Arquer, F. J. Beck, M. Bernechea, G. Konstantatos, “Plasmonic light trapping leads to responsivity increase in colloidal quantum dot photodetectors”, Applied Physics Letters, 100, 043101 (2012). DOI:10.1063/1.3678039
  10. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Light trapping with plasmonic particles: beyond the dipole model”, Optics Express, 19 (25), 25230 (2011). DOI: 10.1364/OE.19.025230
  11. F. P. G. de Arquer, F. J. Beck, G. Konstantatos, “Absorption Enhancement in Solution Processed Metal-Semiconductor Nanocomposites”, Optics Express, 19 (21), 21038-21049 (2011). DOI: 10.1364/OE.19.021038
  12. K. R. Catchpole, S. Mokkapati, F. J. Beck, E.-C. Wang, J. Lee, A. McKinley, A. Basch, “Plasmonics and nanophotonics for photovoltaics”, Materials Research Society Bulletin, July 2011.DOI:0.1557/mrs.2011.132
  13. K. R. Catchpole, S. Mokkapati, F. J. Beck, "Comparing nanowire, multi-junction and single junction solar cells in the presence of light trapping", Journal of Applied Physics, 109, 084519 (2011).DOI:10.1063/1.3579420
  14. S. Mokkapati, F. J. Beck, R. de Waele, A. Polman, K. R. Catchpole, “Resonant nano-antennas for light trapping in plasmonic solar cells”, Journal of Physics D: Applied Physics. 44, 185101, (2011). DOI:10.1088/0022-3727/44/18/185101
  15. S. Pillai, F. J. Beck, K. R. Catchpole, Z. Ouyang, M. A. Green, “The effect of dielectric spacer thickness on surface plasmon enhanced solar cells for front and rear side depositions”, Journal of Applied Physics, 109, 073105, (2011).DOI:10.1063/1.3567299
  16. F. J. Beck, E. Verhagen, S. Mokkapati, A. Polman, and K. R. Catchpole, “Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates”, Optics Express, 19 (S2), A146, (2011).DOI: 10.1364/OE.19.00A146
  17. S. Mokkapati, F. J. Beck, K. R. Catchpole, “Analytical approach for design of blazed dielectric gratings for light trapping in solar cells¨, Journal of Physics D: Applied Physics, 44, 055103, (2011).DOI: 10.1088/0022-3727/44/5/055103
  18. Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localised surface plasmons”, Applied Physics Letters, 96, 261109, (2010).DOI:10.1063/1.3460288
  19. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled, Ag nanoparticles”, Progress in Photovoltaics, 18 (7), 500, (2010). DOI: 10.1002/pip.1006
  20. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in light-trapping by plasmonic nanoparticle arrays located on the front or on the rear of solar cells”, Applied Physics Letters, 96, 033113, (2010).DOI:10.1063/1.3292020
  21. S. Mokkapati, F. J. Beck, A. Polman and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells”, Applied Physics Letters, 95, 053115, (2009).DOI:10.1063/1.3200948
  22. F. J. Beck, A. Polman and K. R. Catchpole, “Tuneable light trapping for solar cells using localised surface plasmons”, Journal of Applied Physics, 105 (11), 114310, (2009).DOI:10.1063/1.3140609
  23. G. Gibson, L. Barron, F. J. Beck, G. Whyte and M. Padgett, “Optically controlled grippers for manipulating micron-sized particles”, New Journal of Physics, 9, 14, (2007).DOI:10.1088/1367-2630/9/1/014

Ms Noushin Dolati Ilkhechi »

PhD Student

Ms Astha Sharma »

PhD student

Shenyou Zhao »

PhD student

Starting from semester 2, 2016, I will be conveneing the Semiconductors cource (ENGN3334/6334) as part of the Renewable Energy and Photonics Majors and Minors.

I am currently the Student Experience Coordinator for coursework students in RSE.

Student experience and engagement (SE) in the University context incorporates three main ideas: inspiring the active participation and interest of students in their academic studies; providing the services and opportunities necessary for students to fully integrate into college life; and facilitating the engagement of students with external organisations through outreach, internships and work experience in order to enrich their studies.

We will be looking for feedback from students on a variety of issues relating to SE as we work towards improving the experience and engagement of our students

Watch this space…

University Teaching Experience and Development

2016-cont. Convenor and lecturer, 3rd year Semiconductors course (ENGN3334)

2009          Developed recorded lectures and assessment material, 4th year Solar Energy Technologies Course (ENGN 4524), Hubs and Spokes project, ANU

2007-2009 Tutor and Guest Lecturer, 2nd year Semiconductor Physics Course 2009 (ENGN 2224), ANU

2008-2009  Graduate Teaching Program and Foundations of University Teaching and Learning Course, Centre for Education Development and Academic Methods, ANU

Updated:  8 September 2015/Responsible Officer:  Head of School/Page Contact:  CECS Marketing